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Abstract The spontaneous magnetization of a two-dimensional lattice model can be ex-
pressed in terms of the partition function W of a system with fixed boundary spins and an
extra weight dependent on the value of a particular central spin. For the superintegrable case
of the chiral Potts model with cylindrical boundary conditions, W can be expressed in terms
of reduced Hamiltonians H and a central spin operator S. We conjectured in a previous
paper that W can be written as a determinant, similar to that of the Ising model. Here we
generalize this conjecture to any Hamiltonians that satisfy a more general Onsager algebra,
and give a conjecture for the elements of S.

Keywords Statistical mechanics · Lattice models · Transfer matrices

1 Introduction

Onsager calculated the partition function of the two-dimensional Ising model by noting that
the two Hamiltonians associated with the transfer matrices generated a finite-dimensional
algebra, now known as the Onsager algebra [1, (60), (61)]. Later, Kaufman showed the
problem could be solved by using free-fermion (i.e. Clifford algebra) operators [2]. This
method leads naturally to determinantal expressions, and indeed Kac and Ward showed that
the partition function could be expressed combinatorially as a determinant [3], while Hurst
and Green [4] wrote it as a Pfaffian (the square root of an anti-symmetric determinant). Later
it was realized that the Ising model could be expressed as a dimer problem, giving a direct
combinatorial solution in terms of Pfaffians [5–8].

The calculation of the spontaneous magnetization M0 is a more difficult problem. On-
sager announced his and Kaufman’s result for the M0 in 1949 [9]. The first published proof
was by Yang in 1952 [10]. Then in 1963, Montroll, Potts and Ward [11] showed that this
problem could also be solved combinatorially in terms of determinants. To do this, one begins
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by writing M0 as

M0 = W/Z, (1.1)

where W,Z are two partition functions (with open, fixed spin boundary conditions). Z is
the usual partition function, while W is the partition function with an extra weight σ0. Here
σ0 is the spin on a site 0 deep inside the lattice. In [11] Z,W are evaluated as determinants.

Like the Ising model, the general solvable N -state chiral Potts model is a solvable model.
It has N − 1 single-site order parameters (spontaneous magnetizations) Mr , where r =
1, . . . ,N − 1. Its transfer matrices satisfy the star-triangle relation [12]. It is, however, much
more difficult mathematically. Its free energy (the logarithm of the partition function) was
calculated in 1988 [13], but it was not until 2005 that Mr was calculated by solving certain
functional relations derived from the star-triangle relation [14]. The calculation verified a
long-standing conjecture of Albertini et al. [15].

The superintegrable chiral Potts model is a special case of the general solvable chiral
Potts model. It has the same order parameters, so to obtain Mr for the general model it
would be sufficient to obtain it for the superintegrable case.

Further, the superintegrable case has mathematical properties quite similar to those of
the Ising model. The Hamiltonians H0, H1 associated with the transfer matrices also satisfy
the Onsager algebra. If one imposes cylindrical boundary conditions, with fixed-spin open
boundary conditions on the top and bottom of the lattice, then we show in Sect. 2 that Z =
u†DUu, where the vectors u†, u are determined by the bottom and top boundary conditions,
and D,U can be taken to be exponentials of the Hamiltonian H = H0 +k′H1 that commutes
with the transfer matrix. Also, W = W(r) = u†DSrUu, where the matrix Sr arises from the
extra weight factor ωrζ in (2.2). There is a reduced representation in which D,U are direct
products of two-by-two matrices, as in the Ising model, and one can define a reduced form
SPQ of the matrix Sr by (3.31).

We recently conjectured [16] that W(r) can be written as a determinant. As yet we have
neither proved this conjecture, nor used it to obtain Mr , but numerical studies strongly
suggest that both the conjecture, and the resulting formula for Mr , are correct.

Here we obtain commutation relations for SPQ in terms of the reduced Hamiltonians
H0,H1. We generalize the problem to one in which H0,H1 satisfy a quite general Onsager
algebra, not just that of the superintegrable chiral Potts model.

The commutation relations appear to determine SPQ. We conjecture their solution and the
resulting determinantal form of W(r). Our expectation is that these generalized conjectures
will be easier to establish than the previous particular one.

2 Partition Function

Definition

We use the notation of [16] and define the N -state chiral Potts on the square lattice L, rotated
through 45◦, with M + 1 horizontal rows, each containing L spins, as in Fig. 1.

We impose cylindrical boundary conditions, so that the last column L is followed by the
first column 1. At each site i there is a spin σi , taking the values 0,1, . . . ,N − 1. The spins
in the bottom row are fixed to have value a, those in the top row to have value 0. Adjacent
spins σi, σj on southwest to northeast edges (with i below j ) interact with Boltzmann weight
W(σi − σj ); those on southeast to northwest edges with weight W(σi − σj ).
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Fig. 1 The square lattice L turned through 45◦

The partition function, which depends on a, is

Za =
∑

σ

∏

〈i,j 〉
W(σi − σj )

∏

〈i,j 〉
W(σi − σj ), (2.1)

the products being over all edges of the two types. The sum is over all values of all the free
spins.

To define the order parameter, we select some inner site C of L, say the first site of row
j + 1. Then there are j rows of edges below C and M − j above. Let ζ be the spin on site
C and define

Wa(r) =
∑

σ

ωrζ
∏

〈i,j 〉
W(σi − σj )

∏

〈i,j 〉
W(σi − σj ), (2.2)

where

ω = e2π i/N , 0 ≤ r ≤ N. (2.3)

Then the order parameter is

Mr = W0(r)/Z0, (2.4)

evaluated in the limit when L,j,M − j → ∞.

Transfer Matrices and Hamiltonians

As in [16], we define a vector ua , of dimension NL, with entries

(ua)σ = 1 if σ1 = · · · = σL = a,

= 0 otherwise. (2.5)

We also define a diagonal NL by NL matrix Sr with elements

(Sr )σ,σ ′ = ωrσ1

L∏

j=1

δ(σj , σ
′
j ). (2.6)
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We take 0 ≤ r ≤ N .
Let T be the NL by NL transfer matrix, defined as in [16], let j be the number of rows

below C, M − j the number above, and set

D = T j , U = T M−j . (2.7)

Then in the usual way, it follows that

Za = u†
aDUu0, Wa(r) = u†

aDSrUu0. (2.8)

The transfer matrix T commutes with a Hamiltonian H. For simplicity, we replace the
definitions (2.7) by

D = e−αH, U = e−βH. (2.9)

For the ferromagnetic model, we expect Mr to be unchanged if we now define it by (2.9),
(2.8), (2.4) and take the limit α,β,L → +∞.

Superintegrable Case

Let

ω = exp2π i/N (2.10)

and, as in [15], define NL by NL matrices Zj ,Xj by

(
Zj

)
σ,σ ′ = ωσj

L∏

m=1

δ(σm,σ ′
m),

(
Xj

)
σ,σ ′ = δ(σj , σ

′
j + 1)

L∏

n=1

*
δ(σn, σ

′
n),

(2.11)

the ∗ on the last product indicating that it excludes the case n = j . Then from (2.6)

Sr = Zr
1. (2.12)

For the general solvable chiral Potts model, the Hamiltonian H is given by Albertini
et al. [15] as a linear combination of the matrices Zn

j Z
−n
j+1 and of XN

j . For the superintegrable

case (in their notation φ = φ = π/2) this becomes (writing their λ as k′)

H = H0 + k′H1, (2.13)

where

H0 = −2
L∑

j=1

N−1∑

n=1

Zn
j Z

−n
j+1

1 − ω−n
,

H1 = −2
L∑

j=1

N−1∑

n=1

Xn
j

1 − ω−n
.

(2.14)

The k′ in (2.13) is a “temperature-like” parameter, satisfying

0 < k′ < 1 (2.15)
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in the ferromagnetic regime, being small at low temperatures, and tending towards one as
the system becomes critical.

Onsager Algebra

These Hamiltonians generate the “Onsager algebra” [1, (60), (61)] and [17–19]. Define

A0 = −2H1/N, A1 = 2H0/N. (2.16)

Then there are two sets of matrices Am,Gn such that

[Am,An] = 4Gm−n,

[Gm,An] = 2Am+n − 2An−m, [Gm,Gn] = 0,
(2.17)

for all integers m,n.
The matrices H0, H1 have a highly degenerate eigenvalue structure. Note that

−
N−1∑

n=1

2ωkn

1 − ω−n
= 2k + 1 − N, 0 ≤ k < N (2.18)

so the LHS is a “sawtooth” function, periodic of period N , linear from k = 0 to k = N − 1.
The matrices Zj are diagonal, and Zn

j Z
−n
j+1 has entries ωn(σj −σj+1). It follows that the

diagonal elements of H0 are of the form

L(1 − N) + 2mN, (2.19)

where m is an integer and

0 ≤ m ≤ L(N − 1)/N.

There is a similarity transformation that takes Xj to Zj . It follows that the eigenvalues of H1

are also integers of the form (2.19), though with different degeneracies from those of H0.

Commutators with Sr

To evaluate the matrix elements (2.8), we look at the matrices formed by setting C1 = Sr

(for a given value of r) and then looking at the sequence of Cm generated by successively
forming the commutators [H0,Cm] and [H1,Cm].

It is convenient to define linear operators f0, f1 by

f0(C) = [H0,C]
2N

, f1(C) = [H1,C] + 2rC

2N
(2.20)

for any NL-dimensional matrix C.
We first note from (2.12), (2.13) that Sr , H0 are diagonal matrices, so Sr commutes with

H0, so

f0(C1) = 0. (2.21)

We can therefore start by forming all the linearly independent commutators with H1. If
we define

C2 = f1(C1),
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then we prove in Appendix A that

f1(C2) = C2 (2.22)

so we now have two matrices C1,C2. They are in general linearly independent.
We have proceeded by performing numerical experiments for small N,L and now report

our observations.
The next step is to form all possible commutators with H0. This leads us to define two

more matrices:

C3 = f0(C2), C4 = f0(C3),

and we find that

f0(C4) = C3. (2.23)

So at this stage we have four matrices, satisfying the three relations (2.21), (2.22), (2.23).
Now we commute with H1, defining four new matrices:

C5 = f1(C3), C6 = f1(C4),

C7 = f1(C6), C8 = f1(C7) − C6,

and find two relations:

f1(C5) = C5, f1(C8) = 2C8, (2.24)

giving eight matrices and five relations in all.
If we now form all commutators with H0, we find eight new matrices:

C9 = f0(C5), C10 = f0(C6), C11 = f0(C7),

C12 = f0(C11), C13 = f0(C8), C14 = f0(C13),

C15 = f0(C14) − C13, C16 = f0(C15),

with four relations:

f0(C10) = C9, f0(C9) = C10, f0(C12) = C11, f0(C16) = 4C15, (2.25)

a total of 16 matrices and 9 relations.
At each stage we have a total of 2m matrices (linearly independent provided L is suf-

ficiently large), satisfying a total of 1 + 2m−1 relations, for m = 1,2,3,4. Our numerical
studies support the conjecture that this pattern continues for all integers m and all N,L, r

such that 0 < r < N .

3 Reduced Representation

Both H0 and H1 commute with the matrix

R = X1X2 · · ·XL (3.1)

which satisfies RN = 1 and has eigenvalues 1,ω, . . . ,ωN−1. If

vP = N−1/2
N−1∑

a=0

ω−Paua (3.2)



804 R.J. Baxter

for P = 0,1, . . . ,N − 1, then

RvP = ωP vP . (3.3)

The full NL-dimensional space is the union of N sub-spaces V0, V1, . . . , VN−1 such that

Rv = ωP v if v ∈ VP (3.4)

and if two vectors v,w belong to different sub-spaces, then

v†w = 0. (3.5)

Clearly vP ∈ VP , and, because H commutes with R,

DUvP ∈ VP , DSrUvQ ∈ VP , (3.6)

where

Q = P + r (modN). (3.7)

From (2.8) and (2.9), Za is a function of α + β , and Wa(r) of α,β separately. We define

Z̃P (α + β) =
N−1∑

a=0

ωPaZa, W̃PQ(α,β) =
N−1∑

a=0

ωPaWa(r) (3.8)

and it then follows that

Z̃P (α + β) = v
†
P DUvP , W̃PQ(α,β) = v

†
P DSrUvQ, (3.9)

where P,Q are again related by (3.7).
The author observed [20] that if one pre-multiplies the vector vP by various transfer

matrices T (in general with different values of the horizontal rapidity), then one does not
generate the full vector space VP , but a smaller space VP in which T has 2m distinct eigen-
values, where

m = m(P ) =
[

(N − 1)L − P

N

]
(3.10)

and [x] means the integer part of x. Each eigenvalue occurs only once.
Label the basis vectors of VP by

s = {s1, s2, . . . , sm}, (3.11)

where each si takes the values 0 or 1. (We can think of each 1 − 2si as an “Ising spin”,
with value ±1.) Thus there are 2m vectors ṽs = ṽ(s1, s2, . . . , sm), each of dimension NL. We
define

κs = s1 + s2 + · · · + sm (3.12)

so κs is an integer, and

0 ≤ κs ≤ m.
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In [21] we showed that we could choose the vectors ṽs so that

vP = ṽ(0,0, . . . ,0), (3.13)

Hṽs = μP ṽs − N

m∑

j=1

(1 − k′ cos θj )sj ṽs

+ Nk′
m∑

j=1

sin θj ṽ(s1, . . . ,−sj , . . . , sm), (3.14)

where

μP = 2k′P + (1 + k′)(mN − NL + L). (3.15)

What we did not show, but believe to be true, is that the vectors ṽs can all be chosen
to be independent of k′. For small N,L we can generate these vectors algebraically on the
computer, and find this to be so. This is consistent with the fact that H is linear in k′ [22].

Define 2m by 2m matrices Ŝj , Ĉj by

(Ŝj )s,s′ = sj

m∏

n=1

δ(sn, s
′
n), (3.16)

(Ĉj )s,s′ = δ(sj ,1 − s ′
j )

m∏

n=1

*δ(sn, s
′
n), (3.17)

where again the ∗ means that the term n = j is excluded from the product. Then from (3.14),
with respect to the basis vectors ṽs , the Hamiltonian H is now

H = H0 + k′H1, (3.18)

where

H0 = L − NL + 2NJ0, (3.19)

H1 = 2P + L − NL + 2NJ1, (3.20)

and

2J0 = mI −
m∑

j=1

Ŝj , (3.21)

2J1 = mI +
m∑

j=1

(cos θj Ŝj + sin θj Ĉj ), (3.22)

I being the identity matrix of dimension 2m. The reduced Hamiltonians H,H0,H1, J0, J1

are also of dimension 2m. If we replace H0, H1 in (2.16) by H0,H1, then again we obtain
the Onsager algebra (2.17).

In this basis we see from (3.13) that vP is replaced by the 2m-dimensional vector vP with
entries

(vP )s = 1 if s = {0,0, . . . ,0},
= 0 else, (3.23)
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i.e.

vP =
⎛

⎝ 1
0

⎞

⎠ ⊗
(

1
0

)
⊗ · · · ⊗

(
1
0

)
. (3.24)

The vectors ṽs depend on P , so where necessary we write them as ṽP
s . Similarly we may

write m,θj ,H,H0,H1 as m(P ), θP
j ,HP ,HP

0 ,HP
1 . In particular, we consider two particular

values P,Q of the index P , related by (3.7), and set

m = m(P ), θi = θP
i ; n = m(Q), θ ′

j = θ
Q
j , (3.25)

where i = 1, . . . ,m and j = 1, . . . , n.
We have not yet defined the θ1, . . . , θm (and θ ′

1, . . . , θ
′
n). This is because we believe the

equations of this paper to apply for arbitrary θ1, . . . , θm and θ ′
1, . . . , θ

′
n. We do not use the

definitions here, but for completeness they are given in Appendix B.

Calculation of Z̃P , W̃PQ

The function Z̃P is unchanged if we replace H, vP in (3.9), (2.9) by the reduced matrices
and vectors H,vP . The exponential e−αH is a direct product of two-by-two matrices, so is
easily calculated. As in (3.16) of [16], define functions λ(θ), u(α, θ), v(α, θ),w(α, θ) by

λ(θ) = λ = (1 − 2k′ cos θ + k′2)1/2, (3.26)

u(α, θ) = cosh(Nαλ) + 1 − k′ cos θ

λ
sinh(Nαλ),

v(α, θ) = −k′ sin θ

λ
sinh(Nαλ), (3.27)

w(α, θ) = cosh(Nαλ) − 1 − k′ cos θ

λ
sinh(Nαλ),

and let Uj be the two-by-two matrix

Uj =
(

up(α, θj ) vp(α, θj )

vp(α, θj ) wp(α, θj )

)
, (3.28)

then

e−αH = e−μP αU1 ⊗ U2 ⊗ · · · ⊗ Um. (3.29)

From (3.9), it follows that

Z̃P (α) = e−μP αuP (α, θ1) · · ·uP (α, θm). (3.30)

We can similarly write down an expression for of W̃PQ, provided we replace vP by vP ,
vQ by vQ, the H in D by HP , the H in U by HQ, and Sr by a reduced matrix SPQ with
elements

(
SPQ

)
s,s′ = (ṽP

s )† Sr ṽ
Q

s′ . (3.31)

Note that the set s has m entries, while s ′ has n. Hence the reduced matrix SPQ is of dimen-
sion 2m by 2n. It is not necessarily square.
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Define

xi = v(α, θi)

u(α, θi)
, x ′

i = v(β, θ ′
i )

u(β, θ ′
i )

. (3.32)

Then we obtain

W̃PQ(α,β) = ZP (α)ZQ(β)DPQ, (3.33)

where

DPQ =
∑

s

∑

s′
x

s1
1 x

s2
2 · · ·xsm

m

(
SPQ

)
s,s′ x

′
1
s′
1x ′

2
s′
2 · · ·x ′

n

s′
n . (3.34)

However, this is still a 2m+n-dimensional summation. In the following sections we firstly
give an explicit conjecture for (SPQ)s,s′ , and secondly a conjectured expression for DPQ as
an m by m (or n by n) determinant. The formula (3.34) is the same as (5.37) of [16], but
now the θj , θ

′
j are arbitrary.

The Commutators

Multiply any of (2.20)–(2.25) on the left by the hermitian conjugate of an arbitrary vector
ṽP

s of the P -set, and on the right by a vector ṽ
Q

s′ of the Q-set. If we define reduced matrices
C1, . . . ,C16 analogously to (3.31), then we see that (2.20)–(2.25) remain valid if we replace
each Cj by its reduced form, and any H0 to the left (right) of the C matrix by HP

0 (HQ

0 ) and
H1 by HP

1 (HQ

1 ).
We can use (3.21), (3.22) to replace HP

0 , . . . ,H
Q

1 in these commutation relations by
JP

0 , . . . , J
Q

1 . We have to take care to note that 0 ≤ P,Q < N and r = Q − P,modN , so
0 < r < N . The general commutators (2.20) become

f0(C) = JP
0 C − CJ

Q

0 , f1(C) = JP
1 C − CJ

Q

1 + 1 − γ

2
C, (3.35)

where

γ = 1 if P < Q, γ = −1 if P > Q. (3.36)

From (3.10), there are four possible cases to consider. We define a function e(P,Q, i) in
each case as follows.

1) e(P,Q, i) = sin θi if P < Q, n = m − 1, γ = 1,

2) = tan(θi/2) if P < Q, n = m, γ = 1,

3) = 1/ sin θi if P > Q, n = m + 1, γ = −1,

4) = cot(θi/2) if P > Q, n = m, γ = −1.

(3.37)

Similarly,

e(Q,P, i) = 1/ sin θ ′
i , cot(θ ′

i /2), sin θ ′
i , tan(θ ′

i /2) (3.38)

for cases 1, . . . , 4, respectively.
In the rest of this paper we take the θi, θ

′
i , xi, yi to be arbitrary and will no longer use the

relation (3.10) between N,L,P,m, or between N,L,Q,n. However, we stress that the re-
strictions (3.37) appear to be necessary: in particular, we have not found any generalizations
to n > m + 1 or n < m − 1.
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The Reduced Matrix SPQ

Using (3.35), (3.36), we obtain two equations for SPQ, namely

JP
0 SPQ = SPQJ

Q

0 , (3.39)

and

JP
1 JP

1 SPQ − 2JP
1 SPQJ

Q

1 + SPQJ
Q

1 J
Q

1 = γ (J P
1 SPQ − SPQJ

Q

1 ). (3.40)

These equations do not determine the normalization of SPQ. To do this we note from
(2.6), (3.2), (3.13) that

(SPQ)s,s′ = 1 if s = 0 and s ′ = 0′. (3.41)

Here 0 = {0,0, . . . ,0} has m entries and 0′ = {0,0, . . . ,0} has n entries.
These give two commutation relations for SPQ. The first is simple. From (3.21), JP

0 is a
diagonal matrix with entries

0,1,2, . . . ,m

and degeneracies 1,m,m(m − 1)/2, . . . . If we order the rows and columns of JP
0 and J

Q

0
so that the diagonal entries are in increasing order, then (3.39) implies that SPQ is block-
diagonal. More generally, (3.39) implies that

(SPQ)s,s′ = 0 unless κs = κs′ . (3.42)

The second (double) commutation relation is more complicated, but algebraic computer
calculations for small m,n satisfying (3.37) strongly suggest that

a) the relations (3.39)–(3.41) uniquely determine SPQ.
b) the non-zero elements of SPQ are simple products.

To formulate our observations more specifically, we first need some further definitions. For
a given set s, let V be the set of integers i such that si = 0 and W the set such that si = 1.
Hence, from (3.12), V has m − κs elements, while W has κs . Define V ′, W ′ similarly for
the set s ′. Set

ci = cos θi, c′
j = cos θ ′

j , (3.43)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let

As,s′ =
∏

i∈W

∏

j∈V ′
(ci − c′

j ), Bs,s′ =
∏

i∈V

∏

j∈W ′
(ci − c′

j ),

Cs =
∏

i∈W

∏

j∈V

(cj − ci), Ds′ =
∏

i∈V ′

∏

j∈W ′
(c′

j − c′
i ), (3.44)

Ts =
∏

i∈W

e(P,Q, i), T ′
s′ =

∏

i∈W ′
e(Q,P, i).

Then our calculations are consistent with the conjecture

(SPQ)s,s′ = Ts T ′
s′As,s′Bs,s′

CsDs′
, (3.45)
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when κs = κs′ , for all four cases (3.37). This agrees with the symmetry

SPQ = (
SQP

)†
, (3.46)

which follows from (2.6) and (3.31). If we define

yi = e(P,Q, i)xi, y ′
i = e(Q,P, i)x ′

i , (3.47)

it implies that (3.34) can be written

DPQ =
∑

s

∑

s′
y

s1
1 y

s2
2 · · ·ysm

m

(
As,s′Bs,s′

CsDs′

)
y ′

1
s′
1y ′

2
s′
2 · · ·y ′

n

s′
n , (3.48)

the sum being restricted to s, s ′ such that κs = κs′ .

4 Determinantal Conjecture

We emphasize that (3.45) is independent of the definitions (B.2) of the θi and θ ′
i , so should

apply for arbitrary θi, θ
′
i . In [16] we conjectured that W̃PQ could be written as a determi-

nant, and this result also appears to be true for arbitrary θi, θ
′
i . We repeat it here for this

generalization.
Define two functions PP (c), PQ(c) by

PP (c) =
m∏

i=1

(c − cos θi), PQ(c) =
n∏

i=1

(c − cos θ ′
i ). (4.1)

They are polynomials in c, of degree m,n, respectively. Let

�P (c) = d

dc
PP (c) (4.2)

and similarly for �Q(c). Let

ε(P,Q) = 1 if P < Q, ε(P,Q) = −1 if P > Q (4.3)

and define functions

f (P,Q,c) = [
ε(P,Q)PQ(c)/�P (c)

]1/2
, (4.4)

B(P,Q,c, c′) = f (P,Q,c)f (Q,P, c′)
c − c′ (4.5)

for P �= Q. They are rational functions of c, c′.
Let BPQ be the m by n matrix with elements

(
BPQ

)
ij

= B(P,Q, cos θi, cos θ ′
j ). (4.6)

By construction it is orthogonal, in the sense that

BT
PQBPQ = I if m ≥ n, BPQBT

PQ = I if m ≤ n. (4.7)
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Define the n by m matrix BQP similarly, with P,m, θi interchanged with Q,n, θ ′
i , re-

spectively. Also define an m by m diagonal matrix YPQ, and an n by n diagonal matrix YQP ,
with elements

(YPQ)i,j = yiδi,j , (YQP )i,j = y ′
iδi,j . (4.8)

We conjecture that

DPQ = det[Im − YPQBPQYQP BQP ] (4.9)

or equivalently

DPQ = det[In − YQP BQP YPQBPQ]. (4.10)

Here Im (In) is the identity matrix, of dimension m (n).
These equations (4.9), (4.10) are the same as (7.2), (7.3) of [16] when θi , θ ′

i are given as
in Appendix B.

5 Summary

If we consider the superintegrable chiral Potts model with cylindrical boundary conditions,
and fixed equal spins in the top and bottom rows, we are led to the reduced Hamiltonians
JP

0 , J P
1 given by (3.21), (3.22). The θi in (3.22) are given as in Appendix B, but for all θi it

is true that if we take

A0 = −4JP
1 , A1 = 4JP

0 , (5.1)

then we can define matrices Am,Gm such that the Onsager algebra (2.17) is satisfied.
To calculate the spontaneous magnetization we must introduce the diagonal matrix Sr

of (2.6). Its reduced form SPQ of (3.31) satisfies (3.39), (3.40). Here we consider these
equations for arbitrary θi , θ ′

i and conjecture that, together with the normalization condition
(3.41), they uniquely define (3.31), and that the solution is (3.45).

We show in [16] that the spontaneous magnetization is given by an expression of the
general form (3.34). Here we take the xi, x

′
i therein to be arbitrary and define related quanti-

ties yi, y
′
i by (3.47). We then generalize our previous conjecture (7.2), (7.3) of [16] to (4.9),

(4.10), still keeping the θi, θ
′
i arbitrary (but note that m,n must satisfy the restrictions (3.37).

The factors Ts , T ′
s′ can be removed from the equations (3.39), (3.40) by incorporating

them into the J0, J1 expressions in (4.9), (4.10). We do this in Appendix C. Our conjectures
then reduce to rational identities in the arbitrary variables ci, c

′
i . In this form they should be

easier to establish.
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Appendix A

Here we prove the commutation relation (2.22). We take 0 < r < N .
Since Sr = Zr

1 commutes with all the terms in the definition (2.14) of H1 except the
j = 1 term, we can replace H1 in (2.14) by
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H1 = −2
N−1∑

n=1

Xn
1

1 − ω−n
. (A.1)

Also, the matrices Z1,X1 defined by (2.11) satisfy

Z1X1 = ωX1Z1. (A.2)

This relation is unchanged if we replace Z1,X1 by X−1
1 ,Z1, and indeed there is a similarity

transformation that does this. Doing this and using the formula (2.18), it follows that for the
purposes of this Appendix we can take H1 to be the N by N diagonal matrix

H1 =

⎛

⎜⎜⎜⎜⎝

1 − N 0 · · · 0
0 3 − N · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 · · · 0 N − 1

⎞

⎟⎟⎟⎟⎠
(A.3)

and Sr to be the matrix whose elements (i, j) are zero unless j = i + r (mod N ) when they
are one. We can therefore write Sr as

Sr = A + B, (A.4)

where A,B are the N by N matrices

A =
(

0 1
0 0

)
, B =

(
0 0
1 0

)
(A.5)

the 1 in the equation for A being the identity matrix of dimension N − r and the 1 for B

being of dimension r . All other elements of A and B are zero.
We readily see that

[H1,A] = −2rA, [H1,B] = 2(N − r)B. (A.6)

Hence

[H1, Sr ] + 2rSr = 2NB, [H1,B] + 2rB = 2NB. (A.7)

These relations are of course independent of similarity transformations. Setting C1 = Sr and
C2 = B , we see that we have proved the relation (2.22).

Appendix B

For a given value of P with 0 ≤ P < N , define a polynomial ρ(w), of degree m, by

ρ(zN) = z−P

N−1∑

n=0

ω(L+P)n(zN − 1)L/(z − ωn)
L
. (B.1)

Let its zeros be w1, . . . ,wm and define θ1, . . . , θm by

cos θj = (1 + wj)/(1 − wj), 0 < θi < π, (B.2)
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for j = 1, . . . ,m. These are the θ ’s of the superintegrable chiral Potts model [16, 20]. They
depend on L,N,P , so we may write θi as θP,i . They are independent of k′. We do not use
them in this paper. In particular our conjectures (3.45), (4.9), (4.10) are for arbitrary θ ’s.

Appendix C

Here we explicitly write the commutation relations (3.39), (3.40) in terms of matrices that
are rational functions of ci = cos θi , c′

i = cos θ ′
i .

From (3.44), we are led to define a modified matrix S̃PQ by the equivalence transforma-
tion

SPQ = EPQS̃PQEQP , (C.1)

where EPQ is a direct product of m two-by two diagonal matrices:

EPQ =
⎛

⎝ 1 0
0 e1

⎞

⎠ ⊗
(

1 0
0 e2

)
⊗ · · · ⊗

(
1 0
0 em

)
, (C.2)

and ei = e(P,Q, i). The matrix EQP is defined similarly, with m replaced by n and ei

replaced by e′
i = e(Q,P, i). We also define J̃ P

1 , J̃
Q

1 by1

JP
1 = EPQJ̃ P

1 E−1
PQ, J

Q

1 = E−1
QP J̃

Q

1 EQP . (C.3)

For the four cases (3.37), let

ξi = 1 − c2
i ,1 − ci,1,1 + ci, (C.4)

repectively, and set

�i = e ⊗ · · · ⊗
(

0 ξi

(1 − c2
i )/ξi 0

)
⊗ · · · ⊗ e, (C.5)

each e being the two-by-two identity matrix and the displayed matrix being in position i.
Then

2J̃ P
1 = mI +

m∑

j=1

(cj Ŝj + �j). (C.6)

It is a polynomial in c1, . . . , cm. The matrix J̃
Q

1 is also given by (C.4)–(C.6), but with m,ci

replaced by n, c′
i .

With these equivalence and similarity transformations, the commutation relations (3.39),
(3.40) become

JP
0 S̃PQ = S̃PQJ

Q

0 , (C.7)

and

J̃ P
1 J̃ P

1 S̃PQ − 2J̃ P
1 S̃PQJ̃

Q

1 + S̃PQJ̃
Q

1 J̃
Q

1 = γ (J̃ P
1 S̃PQ − S̃PQJ̃

Q

1 )

1Each actually depends on both P and Q because of the restrictions (3.37).
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and, from (3.45) and (C.1), our conjectured solution is

(
S̃PQ

)

s,s′ = As,s′Bs,s′

CsDs′
δ(κs, κs′). (C.8)
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